.

N/A

Perhaps you can use this algorithm to open up the Internet. I can't.

4.1 Cryptography.

There are a few brands of cryptography that love to play this hide and seek game on the Internet: “I will give you a semiprime, you go ahead and find the two primes whose product the said semiprime is. If you can”. The mathematicians concerned, having chosen rather large primes for their game, bet that you could never ever find those two primes and went ahead and secured the Internet on that assumption. You could prove them wrong, who knows. You just go ahead and try it.

But before continuing, let us agree on some names: let us call S the mathematicians’ semiprime, p1 the smallest of both primes and p2 the largest one.

As we know, S, p1 and p2 are all in A. So, the first thing you have to do is to convert into a Y-element the semiprime you got from the mathematicians (simply apply integer division by 3 on S).

In the second place you have to take notice of the rest value you get from the division by 3 of the mathematicians’ semiprime. Since it is never divisible by 3, that rest value will always be either 0.3333... or 0.6666... Let us then agree that we are going to call S3 the former and S6 the latter, all in accordance with their rest value.

In order to solve the mathematicians’ little game all you need is a table that looks like this:


parameters needed for cryptography

Column 1 of Table 10 is simply A. On column 2 you see the first index of all odd-numbered checking rounds of Table 1; on column 3 you see the first index of all even-numbered checking rounds, also of Table 1 and finally, on column 4 you see the checking frequencies that you saw earlier, also on Table 1.

So Table 10 is somehow hybrid in that it contains indexes and frequencies related to Y but it also contains A. You should be aware of this.

So we are going to suppose you got from the mathematicians a semiprime of the type S3, for instance 555,991. You convert it to Y-element by dividing it by 3:

S3 = 555991/3 = 185330.3333

The next thing you do is to compute s, where

s = √S

In this case is s:

s = √555991 = 745,64

So S3 is the 185,330th element of Y and s is equal to 745 (in both cases rest values are disregarded.)

At this point we have to introduce a new value, t. By now you should be aware of, that during the checking rounds there are elements of Y that get checked zero times (the primes) while others get checked one time, two times, three times... Well, we are going to designate with t the number of times an element of Y gets checked during the whole checking process. In this context we will be talking of the t-value of a particular element of Y.

Being the square root of the product of two different factors always greater than the smallest of both factors, and having S a t-value of 1, holds necessarily that p1 is smaller than 745 and p2 greater. (By the way, if s is not an element of A, you should replace it by the nearest A-element that is greater than s. In this case it is not necessary as 745 is not divisible by 2 or by 3 and is therefore an A-element).

By now you know that the primes you are looking for are at both sides of 745. You have to take your odds: which one is nearer to 745, p1 or p2? The nearer it is, the easier it is to find.

There is no way to know and that is why I recommend you go and look for p1. The reason is that the operations you have to perform next, tend to give a negative result if you look for p2. It really doesn’t matter very much, but a number that is unexpectedly negative could lead to confusions. But, if you feel comfortable, just go ahead and try to find p2 instead of p1.
At this point you are ready to perform some operations on Table 10. I actually took this table from Excel and so I have called the columns A to D. And incidentally, I strongly reccomend that you expand Table 10 in Excel so far as needed for otherwise you will miss the numerical explanation I will be giving below on how to find p1 and p2.

Before going any further I ought to make a general comment: If you are this far you have to scan Table 10, be it upwards if you are looking for p1, be it downwards if you are looking for p2. But if you look at all 4 columns of Table 10 it will be no surprise to you that as you initiate your search of the two prime factors, you could yourself generate all the data on that table as you go. So, if you are looking for the factors of a large semiprine it could well be that you are better off if you already have generated and saved such a table in advance. The advantage is that it speeds up your search tremendously but the disadvantage is that it takes a lot of space to save.

The first step to begin scanning Table 10 is to choose an entry where to begin. Well, that entry is given by s and that is why you had to convert it to become an A-element if necessary. You can find A in column 1 of Table 10.

So in this case you look for 745 on column 1 and that is the row where your scanning begins. While staying in that row, you compute:

(S3 - B) / D

By “B” and “D” I mean the values that you will find in a spread sheet if you prolong Table 10 downwards. In this case the values found are:

(185330 – 185008) / 1490 = 0.2161

It is extremely important that you subtract B and not C from S3. You subtract C from S6, i.e. when the rest value we talked about earlier is 0.6666…

The value to keep an eye on is of course the result of the operation, in this case 0.2161. Since your first result is not a whole number, you have to scan one row upwards on Table 10, and that is the raw that shows 743 on the first column. You repeat the operation given above, you see that the result is 0.8842, not a whole number and you move ahead, another row upwards. After a while you arrive at a row that shows 613 on the first column. You then compute:

(185330 – 125256) / 1226 = 49

Since you got now a whole number with no decimals, this is the place to be. You have found p1 on the first entry of this row, so

p1 = 613

And if you divide the mathematicians’ semiprime by p1, you find of course p2:

p2 = 555991 / 613 = 907

It is as easy as that.




4.2 Your odds.

I realise very well that I have arrived at p1 and p2 departing from a table. Such a table is easily made and saved to factorise small semiprimes. When you are dealing with 150 to 200-digits numbers, making and saving a table that is suitable to facilitate factorisation of such semiprimes is quite another thing. The fact of the matter is though that if you apply the present algorithm, you will be able to factorise any semiprime without executing one single trial division.

Generating primes means dealing with large numbers. By the time you are generating primes as large as 36,000,000 the difference between the starting point of a checking round and the starting point of the next one is about 24,000. This means that there are 24,000 Y-elements that are being checked before a new checking round begins. Of these 24,000 Y-elements only about 1,512 are primes. This means that the other 22,488 are composites. If you realise that by that time there are 4,000 checking rounds active and that the Y-elements have an average t-value of 400 (meaning that they get checked an average of 400 times), then you will have to conclude that the composites that have been checked only once (and these are the mathematicians’ semiprimes) are a very small percentage of those 24,000. And we are “only” talking of 8-digits primes.

My guess is that as the number of checking rounds keeps growing, there comes a point where the percentage of composites that get checked only once, begins to decrease. But irrespective of the veracity of this last assertion, if your data base (that is no other thing than a huge Table 10) is intended to factorise semiprimes, you could consider incorporating into it only what you are looking for: semiprimes. And you do this by creating a huge Table 10 where you admit only rows whose first entry an A-element is that gets checked only once during the whole checking exercise (I don’t want to confuse you, but Y gets checked, not A, so when I was just talking about “an A-element that gets checked” I mean actually its corresponding Y-element).

Further, you should know that the semiprimes you are bound to look for in your huge Table 10 have 1, 3, 7 or 9 as an end digit. Due to a super abundance of A-elements with 5 as end digit, the other 4 just mentioned constitute each about 15% of all A-elements. You could use this to speed up your searching procedures.

Finally, if you are in the business of finding ALL prime factors of ANY composite, a properly checked Y is the place to be. I am sure that, arrived at this point, you will be able to do it yourself. It is a real poc, you will see.









Epilogue

Now that you have come thus far and indeed, if you have come this far, I wonder who you are. I wonder if you liked it or disliked it, if you learned anything from it or not.
In a way, my readers are my friends. That is what I think when someone reads one of my books. So, if you have read this site, you are one of them.

Anyway, and for what it is worth, I am convinced that our numerical system is unbalanced. No one will ever convince me that the distance between 0 and 1 is equal to the distance between 1 and 2. No one will ever convince me that he has reached comprehension of the number zero. No one will ever convince me of the equidistance that is said to exist within the sequence of the so-called natural numbers. These are the convictions that led me to try to find the prime numbers in a place other than the one where the mathematicians had been looking for them.

I see, as everybody does, that engineers are extremely clever people: they bring us to the moon and back. But I am convinced that Big Science is wrong in claiming for themselves the successes the engineers have achieved. But most of all, I am convinced that Big Science is wrong while trying to measure the universe using the same tools the engineers use to measure the length of an iron bar.

In a few words, engineers are free to place their zero point of measurement any place they want while Big Science, lacking both a ruler to measure and an iron bar to be measured, have absolutely no place where to fix the zero measurement point they claim to possess. Whenever you multiply Mass by anything squared, be it the speed of light, be it the speed of a snail, the results will always be the same: Unknown.

With these considerations I went ahead and tryed to find the prime numbers. Whether I found them or not, you tell me.

After all these reflections, I will end up with the next corollary: there must be an infinite number of primes for if that were not the case then there should be at least one x for which it holds that x2 ≠ x2.




____________________________________________________________________

Click below to order a book.


HTML tutorial HTML tutorial HTML tutorial HTML tutorial HTML tutorial









spiritualita occidentale

Spiritualità Occidentale

Le religioni si danno prima delle culture. Infatti non c'è cultura senza una religione che la sostenga storicamente. Questo è successo in tutto il mondo, anche in Occidente. Solo gli occidentali hanno abbandonato in maniera massiccia la loro religione - la cristianità - cercando di attribuire l'origine della loro cultura attuale a cause fortuite e storicamente recenti come l'umanesimo, il liberalismo e il socialismo, per citarne solo alcune.

Sì, gli occidentali sono inclini ad ammettere che greci e romani hanno avuto una parte nell'emergere della loro cultura; ma è diventato di moda negare l'influenza del cristianesimo.

Mentre greci e romani, presi nel loro insieme, plasmarono la cultura occidentale durante i primi 800 anni della sua esistenza, il cristianesimo, al tempo di Costantino (quarto secolo), continuò a plasmare la civiltà occidentale per circa successivi 1.600 anni fino alla prima metà del XX secolo.

Ci sono molti motivi per cui gli occidentali hanno abbandonato le loro credenze tradizionali; ma ciò non li autorizza a negare la storia o a riscriverla come stanno facendo i negazionisti della cultura ai nostri giorni. Nessuno ha il diritto di negare la storia solo perché non è convinto o non crede più alle credenze e alle malvagità dei suoi antenati.

L'esponente, per antonomasia, del cristianesimo in Occidente fu l'apostolo Paolo. Qualsiasi siano stati i risultati, egli ha influenzato la cultura occidentale come nessun altro lo fece in passato. Per capire questo, ci basta ricordare che mentre Cristo, il fondatore della religione occidentale, non lasciò alcun scritto come eredità ai suoi seguaci, Paolo lo fece.

Paolo, che aveva una mente brillante, ignaro com'era per gli standard odierni usò un greco piuttosto rudimentale di cui padroneggiava non più di 3-4000 parole. Scrisse a tal proposito moltissime lettere di cui ci sono arrivate solo alcune decine che sopravvissero alle vicissitudini della storia. Questa è stata la persona e questi erano gli scritti che diedero forma alla cultura occidentale.

"Spiritualità Occidentale", il titolo di un libro che scrissi in italiano qualche anno fa, risale alla fonte della civiltà occidentale cioè agli scritti dell'Apostolo Paolo. Il libro dunque raccomanda ai suoi lettori di leggere Paolo ogni giorno, per vedere ciò che egli ha da dirci. Questo è il mio consiglio: Leggi solo due o tre righe dei suoi scritti ogni giorno. Questa è l’essenza di "Spiritualità Occidentale".

spiritualita occidentale

서구 영성

종교가 먼저 있고 그 다음에 문화가 형성된다. 역사적으로 종교 없는 문화가 없다는 것이 그 증거이다. 이것은 전 세계에 적용되는 것이며, 서양 세계에도 적용된다. 서구에서는 그들의 종교인 그리스도교를 포기하는 현상이 광범위하게 일어나고 있으며, 그들 문화의 기원이 종교가 아닌 인본주의, 자유주의, 사회주의와 같이 우연하고 역사적인 것들에 기인한다고 여기는 경향이 있다.

그렇다. 서양인들은 그리스와 로마에 그들 문화의 기원이 있다고 여기지만, 그리스도교 영향을 부정하는 것은 유행이 되어버렸다.

그리스와 로마는 첫 800년 동안 서구 문화를 전적으로 형성했지만 그리스도교는 4세기 콘스탄틴 황제부터 시작해서 20세기 초까지 1600년 동안 서구 문명을 형성했다.

서양인들이 그들의 전통적 신앙을 버린 데는 여러 가지 이유가 있겠지만 몇몇 문화를 거부하는 자들이 오늘날 하고 있는 것처럼 역사를 거부하거나 다시 쓸 자격은 없다. 선조들이 믿었던 것을 더 이상 믿지 않게 되었거나 혹은 그들의 믿음이 나쁜 것이라고 여기게 되었더라도 역사를 거부할 자격은 그 누구에게도 없는 것이다.

서양 기독교를 대표하는 사람은 사도 바오로이다. 그는 큰 영향을 서구 문화에 끼쳤다. 이전에 그 누구도 그렇게 하지 못했다. 서방 종교의 창시자는 예수 그리스도이지만 그는 추종자들에게 어떠한 글도 남기지 않았다. 바오로가 한 것이다. 오늘날 기준에는 무지하지만, 훌륭한 마음을 가졌으며, 그가 통달한 3-4천 단어 정도의 기초적인 그리스어로 몇 권의 편지를 썼고, 그 편지는 역사의 부침 속에서 살아남았다. 바로 그가, 바로 그의 저서가 서양 문화를 형성한 것이다.

몇 년 전 나는 “서구 영성”이라는 제목의 책을 이탈리아어로 저술했었다. 그 책은 서구 문명의 원천인 사도 바오로의 저술로 돌아가서, 독자들에게 바오로의 저서를 매일 읽고 그가 말하고자 하는 것을 보라고 권한다. 매일 그의 글을 2~3줄만 읽어보자. 이것이 바로 “서구 영성”이다.

spiritualita occidentale

Religies komen eerst, daarna culturen. Er is geen cultuur zonder een religie die haar historisch ondersteunt. Dit is over de hele wereld gebeurd, dit is ook in het Westen gebeurd. Alleen, westerlingen hebben hun religie, het christendom, massaal verlaten en zijn geneigd de oorsprong van hun huidige cultuur toe te schrijven aan toevallige en historisch recente oorzaken zoals humanisme, liberalisme en socialisme om er maar een paar te noemen.

Ja, westerlingen zijn geneigd toe te geven dat Grieken en Romeinen een aandeel hadden in de opkomst van hun cultuur, maar het is in de mode geraakt om de invloed van het christendom te ontkennen.

Grieken en Romeinen vormden de Westerse cultuur gedurende de eerste 800 jaar van haar bestaan, maar het christendom nam het over met Constantijn in de 4e eeuw en bleef de Westerse beschaving vormgeven gedurende de volgende 1600 jaar tot en met de eerste helft van de 20e eeuw.

Er zijn veel redenen waarom westerlingen hun traditionele overtuigingen hebben opgegeven, maar dat geeft hen niet het recht om de geschiedenis te ontkennen of te herschrijven zoals cultuurontkenners tegenwoordig doen. Niemand heeft het recht om dat te doen alleen omdat hij niet meer gelooft wat zijn voorouders geloofden of omdat hij overtuigd is van de kwaadaardigheid van hun overtuigingen.

Nou, de exponent van het christendom in het Westen was de apostel Paulus. Of het ten voor- of ten nadele is geweest, hij heeft de westerse cultuur beïnvloed zoals niemand anders in het verleden heeft gedaan. Jezus Christus, de stichter van de Westerse religie, liet geen geschriften als nalatenschap achter aan zijn volgelingen. Dad deed Paulus wel.

Ongeletterd als hij was volgens de normen van vandaag, had hij een briljante geest al gebruikte hij een vrij rudimentair Grieks, een taal waarvan hij niet meer dan drie- tot vierduizend woorden beheerste, schreef hij tientallen brieven waarvan slechts enkele de wisselvalligheden van de geschiedenis hebben overleefd. Dat was de persoon en dat waren de geschriften die de westerse cultuur hebben gevormd.

"Westerse spiritualiteit", de titel van een boek dat ik een paar jaar geleden in het Italiaans schreef, gaat terug naar de bron van de westerse beschaving, de geschriften van de apostel en beveelt zijn lezers aan om Paulus elke dag te lezen en te zien wat hij te zeggen had. Lees elke dag slechts twee of drie regels van zijn geschriften. Dit is waar "Westerse spiritualiteit" over gaat.